
JIM MANICO Secure Coding Instructor www.manicode.com

Cloud-Native Security

COPYRIGHT ©2019 MANICODE SECURITY

A little background dirt…

@jimmesta

§ 10 years of penetration testing,
teaching, and building security
programs

§ OWASP AppSec California organizer
and Santa Barbara chapter founder

§ Conference speaker
§ Been on both sides of the InfoSec

fence
§ Loves Clouds

2

COPYRIGHT ©2019 MANICODE SECURITY 3

Introduction to Cloud Native

Introduction to Container Security

Brief Introduction to Serverless Security

What is Kubernetes Anyways?

Attacking and Defending Kubernetes Infrastructure

Where to go Next

Kubernetes Secrets

COPYRIGHT ©2019 MANICODE SECURITY 4

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to Cloud-Native

5

COPYRIGHT ©2019 MANICODE SECURITY 6

COPYRIGHT ©2019 MANICODE SECURITY 7

COPYRIGHT ©2019 MANICODE SECURITY 8

CNCF Projects

COPYRIGHT ©2019 MANICODE SECURITY 9

CNCF Working Groups

COPYRIGHT ©2019 MANICODE SECURITY

Cloud Native Overview

10

P
rocess Security

Process Isolation

§ Microservice-centric
§ CI/CD Support

§ Portable
§ Infrastructure as Code
§ Monitoring and Logging
§ IaaS / PaaS

COPYRIGHT ©2019 MANICODE SECURITY

Cloud Native Security Challenges

11

P
rocess Security

Process Isolation

§ New stuff, new problems
§ Network and infrastructure security still matter
§ Microservices add networking, authZ / authN complexity
§ Attack detection models change drastically
§ New tooling and mindset
§ Automation takes upfront work

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to Serverless Security

12

COPYRIGHT ©2019 MANICODE SECURITY 13

COPYRIGHT ©2019 MANICODE SECURITY 14

The Promise…

COPYRIGHT ©2019 MANICODE SECURITY

Serverless Overview

15

P
rocess Security

Process Isolation

§ Servers go away?!
– Kind of but no…we are offloading server admin to a
cloud provider.

§Ops go away?!
– Not really…we still do networking and sysadmin.

§Vulnerabilities go away?!
– Definitely not.

§Then why are we doing this?!
¯_(�)_/¯

COPYRIGHT ©2019 MANICODE SECURITY

Serverless Top Ten

16

P
rocess Security

Process Isolation

SAS-1: Function Event Data Injection

SAS-2: Broken Authentication

SAS-3: Insecure Serverless Deployment Configuration

SAS-4: Over-Privileged Function Permissions & Roles

SAS-5: Inadequate Function Monitoring and Logging

SAS-6: Insecure 3rd Party Dependencies

SAS-7: Insecure Application Secrets Storage

SAS-8: Denial of Service & Financial Resource Exhaustion

SAS-9: Serverless Function Execution Flow Manipulation

SAS-10: Improper Exception Handling and Verbose Error Messages

COPYRIGHT ©2019 MANICODE SECURITY 17

Hands-On Serverless Hacking

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to Containers

18

COPYRIGHT ©2019 MANICODE SECURITY

Software Deployment is Changing

19

Process Security

Process Isolation

§Massive shift toward cloud computing
§ Increased demand for application and infrastructure
portability across environments

§Avoid vendor “lock in” when possible
§ Increase in microservices AKA loosely coupled services

COPYRIGHT ©2019 MANICODE SECURITY

Modern Applications

20

Process Security

Process Isolation

§Breaking monolithic applications into smaller services
offers several advantages:
- Scale independently
- Stateless
- High Availability
- API-Driven
- Faster iteration times

COPYRIGHT ©2019 MANICODE SECURITY

Issues with Modern Applications

21

Process Security

Process Isolation

§Organizations often operate in an Ops vs. Dev vs. Sec
world

§Applications and microservices are written in a variety of
languages and frameworks

§Applications need to run on different technology stacks:
–Virtual Machines
–Windows Server
–Bare Metal Servers
–Cloud Environments
–On-Prem Environments
–Developer Laptops

COPYRIGHT ©2019 MANICODE SECURITY

Containers, Containers, Containers, Containers…

22

COPYRIGHT ©2019 MANICODE SECURITY

Physical
HostOperating System

Physical Server

Application

COPYRIGHT ©2019 MANICODE SECURITY

Operating System

Physical Server

Application

§One application per server
§Slow deployment times
§Low resource utilization
§Scaling challenges
§Migration challenges
§$$$
§Difficult to replicate locally

COPYRIGHT ©2019 MANICODE SECURITY

VM
Physical Server

Hypervisor

Host Operating System

VM

Gues
t OS

App

VM

Gues
t OS

App

VM

Gues
t OS

App

COPYRIGHT ©2019 MANICODE SECURITY

Physical Server

Hypervisor

Host Operating System

VM

Gues
t OS

App

VM

Gues
t OS

App

VM

Gues
t OS

App

§One physical server and
multiple applications

§Each application runs in a
Virtual Machine

§Better resource utilization
§Easier to scale
§VMs live in the Cloud
§Still requires complete
guest Operating Systems

§Application portability not
guaranteed

COPYRIGHT ©2019 MANICODE SECURITY

Container

Physical Server

Docker (CRI)

Host Operating System

Container

Bins
Libs

App
3

Container

Bins
Libs

App
2

Container

Bins
Libs

App
1

COPYRIGHT ©2019 MANICODE SECURITY

Physical Server

Docker (Container Runtime)

Host Operating System

Container

Bins
Libs

App
3

Container

Bins
Libs

App
2

Container

Bins
Libs

App
1

§Containers are an
application layer construct

§VMs allow us to convert
one physical machine into
many servers

§No Operating System to
boot (fast!)

§Most portable out of all
options

§Less OS overhead using
shared kernel model

COPYRIGHT ©2019 MANICODE SECURITY

Containers
and VMs

are Happy
Together

Physical Server

Hypervisor

Host Operating System

VM 1
Container

App 1

Docker

Bins/Lib
s

VM 2
Container

App 2

Docker

Bins/Lib
s

VM 3
Container

App 3

Docker

Bins/Lib
s

COPYRIGHT ©2019 MANICODE SECURITY

Containers 101

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

31

Client-Server application that includes a
few key components

§ Docker Daemon (dockerd)
– Responsible for container
orchestration

§REST API
– Used to talk to the Docker daemon

§Docker Client (CLI)
– Interface to interact with the Docker
daemon

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

32

Process Security

Process Isolation

COPYRIGHT ©2019 MANICODE SECURITY

Dockerfile

33

Process Security

Process Isolation

§Text document that is used to build images
§Contains all of the commands that could be used
in the CLI to assemble an image

§The docker build command creates the
command-line instructions

COPYRIGHT ©2019 MANICODE SECURITY

Docker Images

34

Process Security

Process Isolation

§Read only templates from which containers are
launched from

§Each image consists of layers
§When you change an image a new layer is
created

COPYRIGHT ©2019 MANICODE SECURITY

Container Security

35

COPYRIGHT ©2019 MANICODE SECURITY

OS Virtualization Security Building Blocks

36

Process Security

Process Isolation

COPYRIGHT ©2019 MANICODE SECURITY

Kernel Namespaces

37

Process Security

Process Isolation

§Limits what a process can see
–The pid namespace partitions kernel resources such that

one set of processes may be provided with an independent
set of process IDs (PIDs). Each container gets its own
network stack
–Network namespaces create virtual networking interfaces

to allow programs to run on any port without conflict
–Mount namespaces enable the mounting and un-

mounting of filesystems without affecting the host
filesystem

§No privileged access to the sockets or interfaces of
another container

COPYRIGHT ©2019 MANICODE SECURITY

PID Namespace

38

Process Security

Process Isolation

COPYRIGHT ©2019 MANICODE SECURITY

Control Groups

39

§Ensures each container is provided with its fair
share of memory, CPU, disk I/O and more

§DoS anyone?
§Released in 2006 in kernel 2.6.24

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

40

Client-Server application that includes a
few key components

§ Docker Daemon (dockerd)
– Responsible for container
orchestration

§REST API
– Used to talk to the Docker daemon

§Docker Client (CLI)
– Interface to interact with the Docker
daemon

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

41

Process Security

Process Isolation

COPYRIGHT ©2019 MANICODE SECURITY

Docker Security Gotchas

42

Process Security

Process Isolation
Untrusted Users

Sensitive Volume Mounts

API Exposed over HTTP

App Vulnerabilities

Untrusted Images

COPYRIGHT ©2019 MANICODE SECURITY

Container Security Benefits

43

§Patching Simplicity
§Typically Short Lifespans
§One Process Per Container (Ideally)
§Isolation from Others

COPYRIGHT ©2019 MANICODE SECURITY

Docker is a daemon running as root

44

From https://docs.docker.com/engine/security/security/

COPYRIGHT ©2019 MANICODE SECURITY

Docker Images Running as Root

45

COPYRIGHT ©2019 MANICODE SECURITY

Docker Images Running as Root

46

§Declare a non-root user in our Dockerfile

COPYRIGHT ©2019 MANICODE SECURITY 47

https://blog.heroku.com/exploration-of-security-when-building-docker-containers

https://blog.heroku.com/exploration-of-security-when-building-docker-containers

COPYRIGHT ©2019 MANICODE SECURITY

It is possible to break out of a Docker container

48

COPYRIGHT ©2019 MANICODE SECURITY

Even in 2019…

49

COPYRIGHT ©2019 MANICODE SECURITY

Yes. Docker Images Have Vulnerabilities

50

COPYRIGHT ©2019 MANICODE SECURITY

Docker vulnerability scanning

51

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

52

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

53

Kubernetes is an open-source
platform built to automate
deployment, scaling and
orchestration of containers.

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

54

K8S is portable. Clusters can
be deployed on a public/private
cloud, on prem, and even on
your laptop.

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

55

K8S is customizable. It is
modular and extensible to fit a
variety of use-cases.

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

56

K8S is scalable. It provides
self-healing, auto scaling, and
replication out of the box.

COPYRIGHT ©2019 MANICODE SECURITY

cluster

COPYRIGHT ©2019 MANICODE SECURITY

virtual
machines that

Kubernetes
manages

cluster

COPYRIGHT ©2019 MANICODE SECURITY

clusternodemaster node node

COPYRIGHT ©2019 MANICODE SECURITY

clusternodemaster node node

node node node

node node node

node node node

node node

node node node

node node nodemaster

master

node

COPYRIGHT ©2019 MANICODE SECURITY

pod

COPYRIGHT ©2019 MANICODE SECURITY

group of
containers

sharing
storage and

network

pod

COPYRIGHT ©2019 MANICODE SECURITY

podcontainer container container

volume A volume B

network interface

COPYRIGHT ©2019 MANICODE SECURITY

apiVersion: v1
kind: Pod
metadata:

name: redis-rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

pod.yaml

COPYRIGHT ©2019 MANICODE SECURITY

pod.yamlnodemaster node node

COPYRIGHT ©2019 MANICODE SECURITY

pod.yamlnodemaster node node

COPYRIGHT ©2019 MANICODE SECURITY

pod.yamlnodemaster node node

COPYRIGHT ©2019 MANICODE SECURITY

deployment

COPYRIGHT ©2019 MANICODE SECURITY

COPYRIGHT ©2019 MANICODE SECURITY

ensure N pods
are up and

running
deployment

COPYRIGHT ©2019 MANICODE SECURITY

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

deploy.yaml

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yamlnodemaster node node

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yamlnodemaster node node

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yamlnodemaster node node

10.0.0.1 10.0.0.2
10.0.0.3

10.0.0.4

COPYRIGHT ©2019 MANICODE SECURITY

abstraction
layer that

enables pod
communication

service

COPYRIGHT ©2019 MANICODE SECURITY

service

COPYRIGHT ©2019 MANICODE SECURITY

servicenodemaster node node

10.0.0.1 10.0.0.2
10.0.0.3

10.0.0.4

COPYRIGHT ©2019 MANICODE SECURITY

servicemaster

service

COPYRIGHT ©2019 MANICODE SECURITY

servicemaster

service

service

COPYRIGHT ©2019 MANICODE SECURITY

servicemaster

service

service

public load balancer
your.site.com

COPYRIGHT ©2019 MANICODE SECURITY

kind: Service
apiVersion: v1
metadata:
name: web-frontend

spec:
ports:
- name: http
port: 80
targetPort: 3000
protocol: TCP

selector:
app: rails

type: LoadBalancer

svc.yaml

COPYRIGHT ©2019 MANICODE SECURITY

kind: Service
apiVersion: v1
metadata:
name: web-frontend

spec:
ports:
- name: http
port: 80
targetPort: 80
protocol: TCP

selector:
app: rails

type: LoadBalancer

svc.yaml

COPYRIGHT ©2019 MANICODE SECURITY

kind: Service
apiVersion: v1
metadata:
name: web-frontend

spec:
ports:
- name: http
port: 80
targetPort: 80
protocol: TCP

selector:
app: rails

type: LoadBalancer

svc.yaml

COPYRIGHT ©2019 MANICODE SECURITY

kind: Service
apiVersion: v1
metadata:
name: web-frontend

spec:
ports:
- name: http
port: 80
targetPort: 80
protocol: TCP

selector:
app: rails

type: LoadBalancer

svc.yaml

COPYRIGHT ©2019 MANICODE SECURITY

Labels
and

Selectors

COPYRIGHT ©2019 MANICODE SECURITY

Metadata (key-
value) which

can be
attached to a

resource

Labels

COPYRIGHT ©2019 MANICODE SECURITY

Used for
identification
such as app
name, tier,

environment

Labels

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

Provides loose
coupling
between
objects

Selectors

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

kind: Deployment
apiVersion: apps/v1
metadata:

name: rails-deployment
labels:

app: rails
spec:

replicas: 4
selector:
matchLabels:

app: rails
template:

metadata:
labels:

app: rails
spec:

containers:
- name: key-value

image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

COPYRIGHT ©2019 MANICODE SECURITY

Ingress

COPYRIGHT ©2019 MANICODE SECURITY

configure
external

access to your
cluster

ingress.yaml

COPYRIGHT ©2019 MANICODE SECURITY

kind: Ingress
apiVersion: extensions/v1beta1
metadata:
name: web-ingress

spec:
backend:
serviceName: web-frontend
servicePort: 80

ingress.yaml

COPYRIGHT ©2019 MANICODE SECURITY

kind: Ingress
apiVersion: extensions/v1beta1
metadata:
name: web-ingress-vhosts
rules:
- host: sub.domain.com
http:

paths:
- backend:

serviceName: web-frontend-1
servicePort: 80

- host: other.domain.com
http:

paths:
- backend:

serviceName: web-frontend-2
servicePort: 80

ingress.yaml

COPYRIGHT ©2019 MANICODE SECURITY

manage
different

environments
in the same

cluster

namespace

COPYRIGHT ©2019 MANICODE SECURITY

ns.yaml
kind: Namespace
apiVersion: v1
metadata:
name: development

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Security Model

102

COPYRIGHT ©2019 MANICODE SECURITY

• The REST API is the
fundamental fabric of
Kubernetes

• All operations and
communications between
components, and external
user commands are REST
API calls that the API
Server handles

• Everything in the
Kubernetes platform is
treated as an API object
and has a corresponding
entry in the API

master

API
Server Scheduler Controller

Manager

etcd

COPYRIGHT ©2019 MANICODE SECURITY

apiserver

Authentication
(Who can
access the

cluster?
kubectl

Authorization
(What can

they
access?)

Admission
Control

(Which
policies are
applied for
this user?

Access
Granted

https://

K8S Security Model

COPYRIGHT ©2019 MANICODE SECURITY

Transport Security

- K8S API typically serves traffic over
TLS

- Self-Signed Cert provisioned on
operators laptop in $USER/.kube/config

apiserver

Authentication
(Who can
access the

cluster?
kubectl

Authorization
(What can

they
access?)

Admission
Control

(Which
policies are
applied for
this user?

Access
Granted

https://

COPYRIGHT ©2019 MANICODE SECURITY

Authentication

- Supports many authentication modules:

HTTP Basic, OpenID, Tokens, Client Cert,
Keystone

- Multiple modules can be specified

apiserver

Authentication
(Who can
access the

cluster?
kubectl

Authorization
(What can

they
access?)

Admission
Control

(Which
policies are
applied for
this user?

Access
Granted

https://

COPYRIGHT ©2019 MANICODE SECURITY

Authorization

- Every HTTP request is authorized
get, list, create, update, etc.

- Request attributes are checked against
policy

apiserver

Authentication
(Who can
access the

cluster?

Authorization
(What can

they
access?)

Admission
Control

(Which
policies are
applied for
this user?

Access
Granted

https://

COPYRIGHT ©2019 MANICODE SECURITY

Authorization

--authorization-mode=AlwaysAllow allows all
requests; use if you don’t need authorization

--authorization-mode=ABAC allows for a simple local-
file-based user-configured authorization policy

--authorization-mode=RBAC allows for authorization
to be driven by the Kubernetes API

COPYRIGHT ©2019 MANICODE SECURITY

Admission Controllers

- Intercept requests prior to object creation
- May mutate incoming request to apply

system defaults

apiserver

Authentication
(Who can
access the

cluster?
kubectl

Authorization
(What can

they
access?)

Admission
Control

(Which
policies are
applied for
this user?

Access
Granted

https://

COPYRIGHT ©2019 MANICODE SECURITY

Admission Controllers

AlwaysPullImages

DenyEscalatingExec

ResourceQuota

NamespaceExists

http://kubernetes.io/docs/admin/admission-controllers/

http://kubernetes.io/docs/admin/admission-controllers/

COPYRIGHT ©2019 MANICODE SECURITY

Attacking and Defending Kubernetes

111

COPYRIGHT ©2019 MANICODE SECURITY

Let’s Play a Game - Kubernetes Threat Model

112

COPYRIGHT ©2019 MANICODE SECURITY 113

Source: Kubernetes Security - Operating Kubernetes Clusters and Applications Safely

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Threat Model

114

User Compromise and Insider Threats
• Cluster admin account compromise

• Rogue Employee

• Tenant account compromise leads to the application compromise

Application Vulnerabilities
• Lack of authentication and authorization, both k8s internal and

external

• Weak or incorrect usage of cryptography

• Application and API vulnerabilities - remote code execution (RCE),
web vulnerabilities (XSS, CSRF, SSRF, SQL Injection etc.)

• Unsecured third party components

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Threat Model

115

Network and Infrastructure
• Network snooping, ARP spoof attacks

• Compromising infrastructure services (etc. NTP, DNS, SSH)

• Kernel and other operating system vulnerabilities

Application Containers
• Container breakout and unauthorized access control plane and other

containers

• Denial of Service - resource hogging, eating up CPU/Mem/Disk/IO to
impact or even crash other containers

• Compromised or malicious image or pipeline

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Threat Model

116

Misconfiguration
• Insecure default configurations - unused open ports, services, not

enforcing system/application limits, failing to implement security
features

• Misuse of passwords, passphrases, TLS private keys (*cough*
checking them into git *cough*. Bad handling include key reuse,
insecure handling of keys, no key rotation, weak passwords, not
using MFA etc.

• Lack of network segmentation - exposing critical systems to various
network attacks

COPYRIGHT ©2019 MANICODE SECURITY 117

COPYRIGHT ©2019 MANICODE SECURITY 118

COPYRIGHT ©2019 MANICODE SECURITY

O boy.

119

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unauthorized Dashboard Access

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Unauthorized Dashboard Access

§ Always run RBAC on your cluster
§ By default, the Dashboard ServiceAccount has very
limited privileges. Do not grant the Kubernetes dashboard
service account elevated privileges such as root!

§ If access is needed, create SAs per user with limited
permissions

§Don’t expose to the internet
§Don’t be Tesla

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Elevated Pod Privileges
§ Pods may be deployed with containers that require
elevated privileges:
– “privileged mode” grants containers the ability to
manipulate the network stack or access devices
– Containers may run as root (User ID = 0)
– Containers may request to mount sensitive volumes or
request write access to volumes
– Containers may request to bind to host ports
– Containers may request elevated Linux capabilities

§Compromised containers can take full advantage of these
privileges to attack the cluster and cloud infrastructure

COPYRIGHT ©2019 MANICODE SECURITY

Pod Security Context

§ Pod security context is defined in the pod or deployment
manifest

§Defines the the privilege and access control for a pod
§The security context defined in a pod applies to all containers

within the pod
§Examples include:
§Defining seccomp, SELinux, or AppArmor profiles
§Defining users and groups containers use to run
§Whitelisting certain Linux privileges to the container

#KubernetesSecurityTip: Pod Security Context should be used
along with Pod Security Policies to enforce strict security
admission controls

COPYRIGHT ©2019 MANICODE SECURITY

priv-pod.yaml

apiVersion: v1
kind: Pod
metadata:

name: priv-pod
spec:

securityContext:
privileged: true

securityContext:
runAsUser: 1001

containers:
- name: pause

image: k8s.gcr.io/pause
securityContext:

capabilities:
add: ["NET_ADMIN", "SYS_TIME"]

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Pod Security Policies

§ Pod security policies are represented by the
PodSecurityPolicy resource

§Defines conditions a pod must meet to be scheduled

§Examples include:

§Disallow privileged containers from running
§Disallow containers that require root privileges

§Disallow containers that access certain volume types

§Disallow containers that access certain host ports

#KubernetesSecurityTip: Use the PodSecurityPolicy admission
controller to restrict the use of privileged pods in your cluster

COPYRIGHT ©2019 MANICODE SECURITY

psp.yaml

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: my-psp

spec:
privileged: false
seLinux:
rule: RunAsAny

supplementalGroups:
rule: RunAsAny

runAsUser:
rule: 'MustRunAsNonRoot'

volumes:
- 'configMap'
- 'emptyDir’
- 'secret’
- 'persistentVolumeClaim'

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unauthorized Network Access

#KubernetesSecurityTip: Third-party technologies such as Istio
and Linkerd offer proxy services or ”sidecar” containers which can
help deploy mTLS / proxying throughout your cluster

§ If you run an API endpoint in your cluster such as Redis
without authentication, other pods may have unrestricted
access to the pod

§A compromised pod may be able to read, alter, or delete
data from another pod in the cluster

§ It is important to isolate these workloads using granular
Network Policies as well as mTLS where appropriate

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unauthorized Network Access

#KubernetesSecurityTip: Third-party technologies such as Istio
and Linkerd offer proxy services or ”sidecar” containers which can
help deploy mTLS / proxying throughout your cluster

§ If you run an API endpoint in your cluster such as Redis
without authentication, other pods may have unrestricted
access to the pod

§A compromised pod may be able to read, alter, or delete
data from another pod in the cluster

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Network Policies

§The Kubernetes object NetworkPolicy allows you to block
traffic to pods

§Acts as a ”pod firewall” where rules are administered by
cluster admins

§Best practice is to start with a default “deny all” and only
add what you need

§Default Deny – You must build the whitelist

COPYRIGHT ©2019 MANICODE SECURITY

np-deny-all.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: web-deny-all

spec:
podSelector:
matchLabels:
app: web

ingress: []

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/01-deny-all-traffic-to-an-application.md

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/01-deny-all-traffic-to-an-application.md

COPYRIGHT ©2019 MANICODE SECURITY

np-limit-traffic.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: api-allow
spec:

podSelector:
matchLabels:

app: bookstore
role: api

ingress:
- from:

- podSelector:
matchLabels:

app: bookstore

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/02-limit-traffic-to-an-application.md

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/02-limit-traffic-to-an-application.md

COPYRIGHT ©2019 MANICODE SECURITY

limit-egress.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: limit-egress

spec:
podSelector:
matchLabels:
app: foo

policyTypes:
- Egress
egress:
- ports:
- port: 53
protocol: UDP

- port: 53
protocol: TCP

- to:
- namespaceSelector: {}

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Istio Service Mesh

§ Istio is a service mesh for
microservices (not just Kubernetes)

§Offers:
– Monitoring
– Metrics
– Traffic Management and Routing
– Security
– Tracing

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Istio Service Mesh

COPYRIGHT ©2019 MANICODE SECURITY

Istio: Envoy Proxy

§ High performance load balancer
§ Config management via API
§ L7 Visibility
§ Rate-limiting, health checks,
retries, etc.

§ In Kubernetes…
– Envoy container is injected as
a “sidecar” container
– Controls pod ingress / egress
routing
– Config is via Pilot

COPYRIGHT ©2019 MANICODE SECURITY

Istio: Pilot

§ Control plane for distributed
Envoy instances

§ Configures Istio configurations
and pushes to other system
components

§ System of record for the
service mesh

§ Exposes API for service
discovery, load balancing, etc.

COPYRIGHT ©2019 MANICODE SECURITY

Istio: Mixer

§ Responsible for providing
policy controls

§ Handles telemetry
collection (Grafana,
Prometheus)

§ Envoy sidecar calls Mixer
before each request to
perform precondition
checks and report
telemetry

COPYRIGHT ©2019 MANICODE SECURITY

Access Cloud Metadata

#KubernetesSecurityTip: Use a tool like KIAM or Kube2IAM to

limit access to the AWS Metadata API. Better yet, apply a

NetworkPolicy to stop traffic outbound.

§ Simple SSRF can lead to Cloud Metadata leak

§ Using curl we can hit the AWS Metadata API endpoint from

a pod and depending on the configuration, sensitive data

may be returned

§ http://169.254.169.254/latest/meta-data/iam/security-

credentials/IAM_USER_ROLE_HERE

COPYRIGHT ©2019 MANICODE SECURITY

deny-
all.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-all
namespace: default

spec:
podSelector: {}
egress:
- to:
- podSelector:

matchLabels:
k8s-app: kube-dns

- ports:
- protocol: UDP
port: 53

policyTypes:
- Ingress
- Egress

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unprotected Kubelet API

#KubernetesSecurityTip: This is a big deal and is not trivial to
address. Some bootstrap tools enable certificate authentication
between the master and nodes by default. Some don’t. YMMV.

§The Kubelet handles Master <-> Node communication
§By default, the Kubelet API allows for unauthenticated
access to ports 10255 (read-only) and 10250 (read /
write)

§If a user has network access to your nodes the
Kubelet API may be exposed

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets

141

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets

142

§Kubernetes Secret objects are designed to store small
amounts of sensitive data such as API keys, tokens, or
passwords

§Secrets are only sent to a node if a pod on that node
requires it

§Secrets may be exposed to a Pod as a mounted volume
or as an Environment Variable

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets

143

§Secret data on nodes is stored in tmpfs volumes and not
stored at rest on disk (technically)

§Communication between api-server to Kubelet is
encrypted with TLS

§Secrets are tied to a particular namespace and must be
encoded using base64

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets Risks

144

§Secrets are stored in plain text by default in etcd
§Very little separation of duties
§During etcd replication, secrets are sent in plaintext
§People still love pushing secrets to version control
§Modifying secrets requires rolling out new objects

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets

145

Which is the most secure way to pass secrets to a pod?

1. Pass secrets as an environment variable

2. Mount volume in container that has secrets in a file

3. Build the secrets into the container image

4. Query a ”Secrets API” over your network

5. Other

COPYRIGHT ©2019 MANICODE SECURITY

Building Secrets into Container Images

146

§Access to image == access to secrets
–Who has access to your images?

§Rotation becomes a new image build
§Secrets are likely stored in source code control ending
up on laptops, cloud environments, etc.

§Chance of accidentally making the secrets “public”
increases

COPYRIGHT ©2019 MANICODE SECURITY

Pass Secrets as Environment Variables

147

§Twelve-Factor App suggests this mechanism

§Passed into containers at runtime

§Can still end up checked in to source control via
hardcoding in YAML

§Native Secrets in Kubernetes support this out of the
box

§ In-cluster RBAC needs to be tight to prevent misuse

§Watch out for secrets in logs and error messages

§Accessible using `docker inspect` or `kubectl describe`

COPYRIGHT ©2019 MANICODE SECURITY

Pass Secrets as Files

148

§Mount a volume in the pod that has a file with secret
values usually as key-value pairs

§Your app needs to support this
§Writing to a temporary filesystem prevents secrets
from being written to disk (auditors <3 this)

§Make sure your app doesn’t just rewrite this file
elsewhere

§Not accessible using `docker inspect` or `kubectl
describe`

COPYRIGHT ©2019 MANICODE SECURITY

Rotating and Revoking Secrets

149

§Rotation and revocation depend on your threat model
and internal security policies

§You need a mechanism in place no matter what
§Pods may need restarted for app to recognize new
secrets

§If using mounted volumes for secrets, pods do not
need to be restarted

§Your app should know how to handle rotation and
revocation gracefully

COPYRIGHT ©2019 MANICODE SECURITY 150

COPYRIGHT ©2019 MANICODE SECURITY

Where do we go from here?

151

COPYRIGHT ©2018 MANICODE SECURITY

The Phoenix Project
The Practice of Cloud System

Administration

Gene Kim, Kevin Behr and

George Spafford

Thomas A. Limoncelli, Strata R. Chalup,

Christina J. Hogan

Jimmy Mesta Secure Coding Instructor www.manicode.com

It's been a pleasure.
jmesta@manicode.com

